Nanomotor rotates microscale objects
نویسندگان
چکیده
منابع مشابه
Nanocrystal-powered nanomotor.
We have constructed and operated a nanoscale linear motor powered by a single metal nanocrystal ram sandwiched between mechanical lever arms. Low-level electrical voltages applied to the carbon nanotube lever arms cause the nanocrystal to grow or shrink in a controlled manner. The length of the ram is adjustable from 0 to more than 150 nm, with extension speeds exceeding 1900 nm/s. The thermody...
متن کاملSeparation of microscale chiral objects by shear flow.
We show that plane parabolic flow in a microfluidic channel causes nonmotile, helically shaped bacteria to drift perpendicular to the shear plane. Net drift results from the preferential alignment of helices with streamlines, with a direction that depends on the chirality of the helix and the sign of the shear rate. The drift is in good agreement with a model based on resistive force theory, an...
متن کاملOrganization of microscale objects using a microfabricated optical fiber.
We demonstrate the use of a single fiber-optic axicon device for organization of microscopic objects using longitudinal optical binding. Further, by manipulating the shape of the fiber tip, part of the emanating light was made to undergo total internal reflection in the conical tip region, enabling near-field trapping. Near-field trapping resulted in trapping and self-organization of long chain...
متن کاملMicrorobotics for Molecular Biology: Manipulating Deformable Objects at the Microscale
Recent advances in molecular biology such as cloning demonstrate that increasingly complex micromanipulation strategies for manipulating individual biological cells are required. From a robotics standpoint, the manipulation of biological cells, sometimes referred to as biomanipulation, presents several interesting research issues that extend well beyond cell manipulation. Biological cells are h...
متن کاملAn improved autonomous DNA nanomotor.
DNA nanomotors are synthetic biochemical devices whose motion can be controlled at the molecular scale. Some DNA devices require several exogenous additions of different types of fuel to operate, which limits their potential uses. However, several devices that operate autonomously have recently been described. One such DNA nanomotor, based on a 10-23 DNA enzyme (DNAzyme), was introduced by Chen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature
سال: 2006
ISSN: 0028-0836,1476-4687
DOI: 10.1038/440163a